教学研讨|1.2.1函数的概念
手机在手,备课无忧,学习不愁
点击上方蓝字,随时随地备课
关注“阳光备课”,点“往期文章”,必有你所需。
教学研讨所选素材大多来自国家教育资源公共服务平台的部级优课,或全国青年数学教师优秀课的获奖作品,由阳光备课整理,仅供各位老师参考,版权归原作者所有。
▍来源:网络
一、教材分析:
本节内容为《1.2.1函数的概念》 ,是人教A版高中《数学》必修一《1.2函数及其表示》的第一课.函数是中学数学最重要的基本概念之一,在初中,学生已经学习过函数的概念,它是从运动变化的观点出发,把函数看成是变量之间的依赖关系.从历史上看,初中给出的定义来源于物理公式,最初的函数概念几乎等同于解析式.后来,人们逐渐意识到定义域与值域的重要性,而要说清楚变量以及两个变量间变化的依赖关系,往往先要弄清各个变量的物理意义,这就使研究受到了一定的限制.如果只根据变量观点,那么有些函数就很难进行深入研究.
例如:
对这个函数,如果用变量观点来解释,会显得十分勉强,也说不出x的物理意义是什么.但用集合、对应的观点来解释,就十分自然.函数思想也是整个高中数学最重要的数学思想之一,而函数概念是函数思想的基础,它不仅对前面学习的集合作了巩固和发展,而且它是学好后继知识的基础和工具.函数与代数式、方程、不等式、数列、三角函数、解析几何、导数等内容的联系也非常密切,函数的基础知识在现实生活、社会、经济及其他学科中有着广泛的应用.本节课用集合与对应的语言进一步描述函数的概念,让学生感受建立函数模型的过程和方法.
二、学情分析:
在学习用集合与对应的语言刻画函数之前,学生已经会把函数看成变量之间的依赖关系,同时,虽然函数比较抽象,但是函数现象大量存在于学生的周围,教科书选用了运动、自然界、经济生活中的实际例子进行分析,从实例中抽象概括出用集合与对应的语言来定义函数概念,对学生的抽象、归纳能力要求比较高,能很好的锻炼学生的抽象思维能力以及加深对函数概念的理解.
三、教学目标:
(一)知识与技能
理解函数的定义,能用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的三要素.
(二)过程与方法
通过三个实例共性的分析到函数概念的形成,再对三个实例进行拓展,让学生对函数概念进行辨析,体现从特殊到一般,再从一般到特殊的思想方法,渗透了归纳推理,实现了感性认识到理性认识的升华.
(三)情感、态度与价值观
通过从实际问题中抽象概括函数的概念,培养学生的抽象概括能力,体会函数是描述变量之间依赖关系的重要数学模型,在此基础上学会用集合与对应的语言来刻画函数,感受数学的抽象性和简洁美.
四、教学重点与难点:
(一)教学重点
体会函数是描述变量之间的依赖关系的重要数学模型,并能用集合与对应的语言来刻画函数.
(二)教学难点
函数概念的理解及符号“f(x)”的含义.
五、教学策略:
首先,通过魔术表演,体现函数在实际生活中的运用,激发学生进一步学习函数的积极性;其次,在学生习惯用解析式表示函数的基础上借助教科书实例,从解析法、图象法、列表法等不同的方式,结合函数的数与形两个方面给学生充分的认识,为学生用集合与对应的语言刻画函数打下感性基础;再次,分析讲解函数概念中的关键点时,对于对应关系、函数关系中多对一的情况、值域是集合B的子集等较为抽象问题的理解采取放乒乓球的实验,让抽象问题具体化;最后,通过对三个实例进行拓展让学生抛开物理运动背景,用集合与对应的语言来分析函数并强调函数关系中对应关系的方向.
六、教学基本流程:
关注公众号:阳光备课
关注公众号:阳光备课
王建武
(甘肃省白银市实验中学,白银,730900)
一、教学内容解析
函数是描述客观世界变化规律的重要数学模型。高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,函数的思想方法将贯穿高中数学课程的始终。[1]
“新课标”内容标准要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素;从学生已掌握的具体函数和函数的描述性定义入手,引导学生联系自己的生活经历和实际问题,尝试列举各种各样的函数,构建函数的一般概念。[1]
据此,本节课教学内容内涵应为函数基于集合与对应语言的概念之理解和运用,教学内容反映了对应思想、函数思想。本节教学内容中,函数三要素属于事实性知识、函数的定义属于概念性知识、求定义域及判断函数相等属于程序性知识、认识到自己的认知需要不断发展并激励自己不断求知属于元认知知识。为此本节课设定的教学重点是“函数定义的形成”。
函数知识的学习和函数概念的认知是一个不断反复、循序渐进的过程,本节课教学内容的上位知识为初中数学已经学习的函数概念及具体函数形式;下位知识则是函数表示法、指数及对数函数等知识。
本节课教学中,需要从生活实例出发,引导学生经历基于集合及对应语言的函数概念形成过程,然后利用这一概念分析具体函数形式,体会概念应用的同时进一步加深对概念的理解。这一过程体现了数学研究“特殊——一般——特殊”之路径及数学知识应用之价值。
二、学生学情分析
在之前的学习中,学生已经初步具备了生活中函数实例的基本经验,能简单运算有关一次、二次和反比例函数模型的问题,初步体会了归纳能力及基于变量关系认知的函数思想,通过“集合”知识的学习,对集合思想的认识也日渐清晰。以上知识为函数概念学习提供了认知基础。同时,这一年龄段的学生普遍思维活跃、求知欲较强、自我表现欲望较强。以上因素为本节课教学提供了非认知基础。
理解高中数学“执牛耳者”——函数概念,需要学生掌握的知识、掌握的技能和具备的情绪能力比较复杂。学生需要具备丰富的生活中观察函数关系的经验、需要能较熟练的操作二次函数运算、需要较强的抽象思维能力,同时还需要坚韧的品质和稳定的意志力。
上述需求与学生既有学习条件相比,高一新生在生活认知、二次代数式运算能力、概括归纳能力方面还有欠缺,意志力和情绪稳定性维度也显不足。这些欠缺和不足中,生活认知的不足可以通过教师提供生活实例及小组讨论方式弥补、二次函数运算能力可以通过课前预习提醒复习学生自主化解、意志力和情绪稳定性维度的欠缺可以通过课堂鼓励和分解教学难度得到初步化解,抽象思维能力的不足是最难化解的难题。据此本节课设定的教学难点为“函数符号y=f(x)的理解,函数概念的整体性认识”。
二、教学目标设置
依据“课程目标-单元目标-课堂教学目标”的层级性特征,在“课标”的“总体目标”和“内容与要求”的指导下,结合学情分析,对本节课教学目标做如下设置。
1.正确理解函数的定义,能用集合与对应语言刻画具体函数。通过实例分析,体会对应关系在刻画函数概念中的作用。
2.理解函数三要素,会判断两个函数是否相等,认识函数概念的整体性。
3.理解符号f(x)的含义,能解释y=f(x)与y=f(a)的区别与联系。体会函数思想,代换思想。
三、教学策略分析
依据本节课教学内容、学情实际和教学目标要求,设计以下教学策略。
1.本节课以“人教社A版(必修1)第一章第二节第一课时”之内容为主体组织教学,并依据学生实际和认知特点对教材内容顺序做了两点调整。一是将教材中函数的定义给出后紧接的具体函数分析(一元一次函数、一元二次函数和反比例函数)调整到本节教学的最后,直接通过例题求定义域和理解函数概念整体性,便于学生深入理解函数定义。二是将教材中区间概念的教学调整到第二课时,保证函数概念教学的连贯性和课堂教学内容的精炼。
2.本节课为概念教学,依据上述学情分析,为激发、调动学生学习兴趣和主动性,教学中计划采用问题式教学和探究式教学。
3.本节课教学重点为“函数定义的形成”,问题串要围绕学生函数定义的递进认知为中心进行设计。具体通过三个实例中变量对应关系(对应法则)的认知及自变量取值的限定范围(定义域),引导学生递进理解、归纳出函数的概念。继而设计若干对应关系,通过是否为函数的判断,帮助学生深入理解“并非所有对应都是函数”及“定义中的关键词”、“三要素”和“值域与集合B的关系”等难点问题。最后通过分析具体函数形式,巩固基于集合与对应的函数定义之理解。
4.本节课教学中,计划在小组合作及教师针对指导中帮助认知基础较差学生的学习,通过引领小组讨论和思考较难问题的方式满足认知基础较好学生的发展需求。
5.本节课教学中,计划通过小组回答问题及教师观察等方式及时反馈学习情况。
教学过程设计
教学内容分析
函数的概念是数学中最重要的概念之一,其本质是从一个非空数集到另一个非空数集的特殊对应,它揭示了现实世界中数量关系之间相互依存和变化的实质,是描述客观世界中变量间依赖关系的数学模型。本节课在高中数学中有着承上启下的作用,从初中运动观下的函数定义出发,过渡到使用集合语言描述了更为确切的函数定义,本节课渗透的函数思想将被应用到数学的各个分支领域。本课的教学重点是:理解函数的概念,教学难点是:函数概念及对符号y=f(x)的理解。
教学目标设置
知识与能力:理解函数的集合观定义,并会使用符号表示;理解函数符号f(x)与y;会求一些简单函数的定义域,理解对应法则;使学生提高抽象概括、分析总结、数学表达等基本数学能力。
过程与方法:创设情境,使学生经历从具体函数实例和运动观定义去解析函数的基础上,理解函数的集合观定义,进而理解法则,培养学生类比与联想的学习能力。
情感、态度和价值观:学生亲身经历了由特殊到一般的研究过程,培养了学生质疑、探究的科学精神,也培养学生唯物主义观点。
学生学情分析
教学对象:市重点高中学生。学生对函数概念并不陌生,初中的函数概念教会学生认识变量间的依存关系,并且掌握了一次函数、二次函数和反比例函数的基本性质,已经基本具备建模的能力。学生思维普遍活跃,善于表达,善于发现问题,乐于和教师交流分享他们的解题心得。但高一学生的抽象概括能力较弱,由实例到抽象的数学语言,需要教师的引领。
教学策略分析
在短短的45分钟要让学生经历函数定义发展史上100年的探究历程,学生不可能独立完成,这需要教师用材料铺好一条路,要了解学情并对学生的疑问做好预设,难度大的地方搭好梯子,本节课以“学生为主体,教师引导”教学原则来设计,着重解决了学生的几个疑问。
1、怎么从初中概念出发得到高中函数概念?
学生的抽象概括能力还很薄弱,这使得用集合语言刻画函数概念很有难度,如果直接归纳定义学生会失去刚刚燃起的探究欲望,所以我选择从生活中的三个实例入手,用问题串引领学生完成实例的分析,在分析过程中,重点让学生体会每个例子的“变化过程”就是对应法则,初中定义的”某一区间”用集合语言描述就是定义域A,自然过渡到集合语言描述函数概念。师生共同研究得到函数定义;锻炼了学生的语言表达及思辨能力,让学生感受建立函数模型的过程和方法。
2、对应法则是指什么?
学生会觉得对应法则这个词很陌生,理解不好对应法则就无法真正理解函数的概念。我从三个实例中逐一的让学生体会初中定义中的 “变化过程”,第一个例子股票的函数关系变化过程是通过图像来展现的,第二个例子国民生产总值的函数关系是通过表格来展现的,第三个例子函数关系是通过解析式来表达的,变化过程通过不同的方式呈现,我们把这些呈现方式理解为函数的对应法则。
3、为什么要引入抽象符号f(x)
①先让学生回忆初中如何设出二次函数?y=ax2+bx+c(a不等于0,a,b,c为常数)提问什么要标明a,b,c为常数?是为了突显自变量是!
现在二次函数可以设为:y=ax2+bx+c(a不等于0)清楚明了的表达了谁是自变量!
②初中求当x=2时y的值? 现在可以表示为f(2),简洁清晰。
以上两点需要教师引导,学生才能体会的到,学生这时会从内心对f(x)不抵制,不惧怕,明白了它其实就是一种符号语言的表达。
4、如何更深入的理解对应法则f呢?
这是本节课的难点。通过学生熟悉的一次函数、二次函数入手,在求解f(2),f(a),f(a-1)的过程中和学生一起发现各自的对应法则是什么;再通过例2的三个小题,让学生体会变量表达形式不同但对应法则相同,求函数解析式的过程就是确定对应法则的过程,进而突破难点。
关注公众号:阳光备课
关注公众号:阳光备课
END
全
文
完
【以上内容由网上搜索而来,由阳光备课整合,各部分版权归原作者所有,在此向作者致谢!文章部分内容由截图软件得到,可能不够清晰,若喜欢该资源请向作者或出版者购买,摘录、转载,是想为经济欠发达地区教师提高业务水平做点事,仅此而已,如有侵权,请联系删除,谢谢!】
欢迎来稿
有好文章、好素材请发至邮箱:
yangguangbeike@126.com
(阳光备课@126.com),让我们为经济欠发达地区教师提高业务水平做点事,谢谢!
(点下列标题可阅读)
1.
2.
3.
4.
7.
8.
9.
10.
一师一优课(部级优课)系列:
(点击下列标题阅读)
3.
4.
5.
6.
7.
8.
9.
10.
11.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
核心素养系列文章:
(请点下列标题阅读)
0.
2.
4.
提前备课系列(点下列标题可阅读):
7.“精确到”与“精确度”傻傻不分--二分法求方程的近似解的解惑
13.高一数学开学第1课|1.1.1 任意角 教什么,怎么教
14.高二数学开学第1课|1.1.1 变化率问题教什么,怎么教
17.高一数学开学第1课|1.1.1 算法的概念教什么,怎么教
********************************************
人教网辅导孩子学数学·系列上:
(点击下列标题阅读)
人教网辅导孩子学数学·系列下:
(点击下列标题阅读)
人教网教学设计·课件·试题·系列上:
(点击下列标题阅读)
人教网教学设计·课件·试题·系列下:
(点击下列标题阅读)
一师一优课·部级优课·系列上
(点击下列标题即可阅读,含教学设计·课堂实录·教学资源)
10. 北师大版一年级数学上(2018)
11. 北师大版二年级数学上(2018)
12. 北师大版三年级数学上(2018)
13. 北师大版四年级数学上(2018)
14. 北师大版五年级数学上(2018)
15. 北师大版六年级数学上(2018)
免责声明
你 · 的
阳光备课
教学、教研、休闲、娱乐
长按识别二维码关注我们
查看历史消息看往期内容
温馨提示
有小孩在读小学、初中的教师,有弟妹在读小学、初中的同学,请长按识别下面二维码关注“阳光教研”。阳光教研有一至九年级各学科每一节课的课堂实录啊,学生课堂上听不懂,可课后观看;优秀生可提前自学,转发吧。
福利!高中人教版全套学案领取方法:
先关注 “阳光备课”公众号,然后点公众号页面左下角的键盘按钮(如下图)
▼
欢迎转发朋友圈。